Al & Digital Twin Technology in Traffic Signal Timing

A Case Study of Blue Diamond Corridor in Las Vegas, Nevada

Presented by: Maria Kolar

Location Overview

- 6.5 mile corridor on Blue Diamond Rd. in Las Vegas, NV
- 12 signalized intersections with a fixed timing schedule (7 TOD plans)
- 2-4 lanes in each direction

Objectives

Proof of concept - apply
Axilion's X Way platform to
leverage digital twin
technology and AI-based
reinforcement learning for
traffic signal retiming

Traffic improvements
Improve travel time
(weekdays only) while
maintaining pedestrian
safety

Cluster Analysis

- Performed a cluster analysis to obtain initial observations of the corridor
- Includes HiRes log+ probe data
- Unsupervised AI process sorts data into bins

Challenges

Detector limitations

- Two partial count detectors
- Not enough to extract turning movement count

BD/ Durango Dr (#2228): NB only, all lanes

BD/ Dean Martin Dr (#2012): EB + WB, all lanes

Generation of turning movement counts

• To overcome the challenge around limited count detectors, Axilion meshed the available count detector data together with probebased turning movement counts at a 15-minute resolution

Example of Axilion's detector correlation matrix comparing high-resolution traffic log data to probe vehicle data (Skyland Blvd. located in Tuscaloosa, AL)

Digital twin build & calibration

- Set up a digital twin to match the same controller configuration and traffic movements present in the Blue Diamond corridor
- The digital twin emulated the geography of the corridor down to 6-in. exactness
- TMCs were injected into the digital twin to model driver behavior

Digital twin in X Way platform (intersection of Blue Diamond Road and S Rainbow Boulevard)

X Way - Elevated Pedestrian Protection

Pedestrian activity

- High-res log pedestrian activities across the corridor
- Better understanding of how the corridor should be modeled and optimized

Enhanced Pedestrian Support

- RTC directive remove oversized ped
- X Way enhanced accordingly:
 - Added pedestrian activation to simulation, based on HighRes log detection activation
 - Added Ped crossing to visualizer

Al processing using reinforcement learning

- Automatically tested 65,930 iterations of signal timing configurations using the digital twin
- Identified the signal timing plan that yielded the most favorable results to improve main arterial time without major detriment to level of service for non-coordinated approaches

Backend of optimization in X Way

Pre-deployment analysis

• Before deploying the new plans in the field, X Way users could view the expected impact of the signal timing plan on measures such as control delay, arrivals on green, and number of stops

X Way analytics dashboards comparing projected outcome of signal timing plan changes

Optimized set of signal timing plans

- Full set of recommended splits and offsets per each intersection and coordination pattern
- Available via the UI, or can be exported to CSV and PDF files, timing sheets databases to be downloaded directly to the controller

Results: AM Peak

• 9.55% reduction in travel time for the eastbound traffic at the 7:47 AM peak

Results: PM Peak

• 6.69% reduction in travel time for the westbound traffic at the 5:47 PM peak

Morning - Eastbound Traffic (7am-9am)

Afternoon - Westbound traffic (3pm -7:30pm)

- Samples Collected:
 - Before deployment: 13
 - o After deployment: 4
- Findings:
 - o 31.2% reduction in travel time after deployment

Samples Collected:

- O Before deployment: 52
- o After deployment: 12
- Findings:
 - 13.1% reduction in travel time after deployment

Many thanks to the RTC team for their excellent support & guidance!

