

Application of Al Detection and Machine Learning Optimization in Traffic Signal Management

Sirwan Shahooei Everett Ivy

City of Lewisville & XTraffic

Problem: Modern Sensors are not Fully Exploited for Signal Control

- Zone-based detection and control logic limit the usefulness of high-resolution data
- Timing plans limit flexibility of a real-time control system
- Positional / classification data is more commonly being used for ATSPM or virtual zones - but rarely for realtime control

Solution: Real-time, Closed Loop Control

- Sensing Continuous State Feedback
 - Sample position, speed, classification, and driver intent — updated many times per second
 - Vehicles and pedestrians alike
- Realtime Control Rapid Control Cycle
 - Directly selects optimal phase transitions based on real-time traffic sampling, both <u>locally (intersection)</u> and <u>globally (citywide)</u>
 - Incorporate City preferences and priorities
 - No reliance on adaptive systems, fixed timing plans, or time-of-day logic

Realtime Control - Global (II/II)

Corridor or Citywide Level (Global)

- Every intersection can see live data from its neighbors
- Build and route <u>Platoons</u> with minimal delay, maximum arrivals-on-green

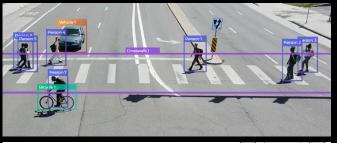
The Challenges:

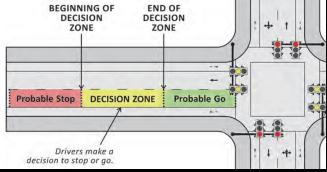
- Balance demand across available roadway capacity (aka: pressure)
- Handle dynamic volumes during rush hours, events, inclement weather

Potential Operational Benefits

A Brain in Every Intersection allows:

- Automated learning and response
 - No signal retiming
 - Detects and acts on large traffic events and macro traffic patterns
 - Less alerts, more action
- Seamless <u>preemption</u> for various vehicle classes
- ATSPM provided as a side benefit to the data collection needed for the control process





Potential Safety Benefits

High-rate, realtime control with object data allows:

- Action, not observation, to protect Vulnerable Road Users (VRUs)
- Sync phase changes with minimal dilemma zone occupancy
- Extend red to avoid collisions from red-light runners
- All implemented passively to minimize configuration or tweaking
- Compliance (jay walking, red light running, etc)
- Dilemma zone decisions

Realtime Control - Local (I/II)

Intersection Level

- Command existing traffic controller over NTCIP
- Local Control based on live data of all vehicles and pedestrians within local radius (hundreds of meters)
- Selectively consider high-level preferences and city traffic data

The Challenges:

- Balance fairness and safety with efficiency
- Handle sensor uncertainty, outages, occlusions/obstructions

Pilot Project

- FM 407 corridor (46,500 vehicles per day)
- Activated in October 2024

Justin

Roanoke

Flower Mound

Colleyville

Grapevine

Carrollton

Highland Park

Dallas

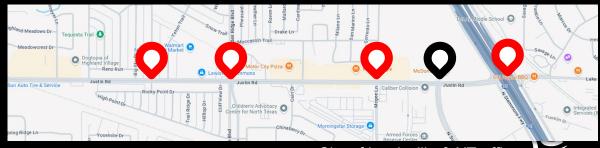
Garland

Initial Results and Pilot Expansion

Time Period	Average Delay (sec)		Benefit (%)
	Before	After	(70)
Entire Weekday	16.7	10.3	38.7%
AM Peak (6AM-9AM)	17.1	10 .7	37.4%
Midday Peak (9AM-4PM)	19.1	11.0	42.3%
PM Peak (4PM-7PM)	20.4	12.6	38.1%

Time Period	Arrival on		Benefit
	Green (%)		(%)
	Before	After	
Entire Weekday	52.6	7 1.0	18.5
AM Peak	53.0	70.3	17.3
(6AM-9AM)	33.0	70.5	17.5
Midday Peak	47.3	68.7	21.4
(9AM-4PM)	47.3	00./	Z 1.4
PM Peak	45.2	65.8	20.6
(4PM-7PM)	43.2	0.00	20.0

- ❖ Sep 2023 VS Dec 2024.:
 - Increased Arrival on Green and reduced average delay for every time period

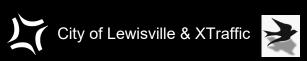


Results to Date

Time Period	Arrival on		Benefit
	Green (%)		(%)
	Before	After	
Entire Weekday	56.3	63.3	7.0
AM Peak	57.0	60.8	3.8
(6AM-9AM)	37.0	00.0	3.0
Midday Peak	54.4	640	0.6
(9AM-4PM)	54.4	64.0	9.6
PM Peak	50.6	58.0	7.4
(4PM-7PM)	30.0	30.0	7.4

Time Period	Average		Benefit
	Delay (sec)		(%)
	Before	After	
Entire Weekday	20.1	16.8	16.4%
AM Peak (6AM-9AM)	20.1	17.3	14.0 %
Midday Peak (9AM-4PM)	20.2	16.1	20.3%
PM Peak (4PM-7PM)	24.1	2 1.0	13.1%

- ❖ Sep 2025 vs. Dec 2024:
 - Improved intersection performance along corridor
 - Eliminated 3,580 hours of delay
 - Correlates to \$12 million of delay savings over 10 years (FHWA methodology)
- In March 2025, activated additional 4 intersections to control corridor.


Advantages and Disadvantages

<u>Advantages</u>

- Minimal configuration needed from the City
- Able to quickly handle high traffic variations
- Benefits seen throughout the day
- Automatically adapts to lane closures and incidents

<u>Disadvantages</u>

- Requires reliable video stream
- Weather impacts
- Black Box
- No Fixed Sequence
- No Offset / Lag time
- Prone to Constraints

Challenges and Next Steps

- Merge "black box" style control with engineer-specified requirements and preferences
 - Balance fairness and individual wait times against a global optimized system
- Transition from Delay-oriented model to safety-oriented approach
- Automation vs notification
 - When to involve end users, and when to leave them alone
- Large scale implementation tackle issues that arise from deployment on a true citywide scale
- Coming up with an innovative approach to progression and priority
- Changing the traditional signal timing mindset and creating a new approach to signal timing

